The Neural Dynamics of Amplitude Modulation Processing in the Human Auditory System

نویسندگان

  • Nai Ding
  • Marisel Villafane
چکیده

Title of Document: THE NEURAL DYNAMICS OF AMPLITUDE MODULATION PROCESSING IN THE HUMAN AUDITORY SYSTEM Kai Sum Li, MS, 2010 Directed By: Professor Jonathan Z. Simon, Department of Electrical and Computer Engineering The neural, auditory amplitude modulation transfer function (MTF) is estimated from 3 – 50 Hz using magnetoencephalography (MEG). All acoustic stimuli are amplitude modulated (AM). Two different dynamical stimulus types are used: exponential sweeps with the AM rate changing from 2 up to 60 Hz, and 89 down to 3 Hz. Several carriers are also employed, including 3 pure-tone carriers (250 Hz, 707 Hz and 2 kHz) and 3 bandlimited pink-noise carriers (1/3, 2 and 5 octaves centered at 707 Hz). Neural response magnitudes, phases, group delays and impulse responses are all estimated. Our results show that the shape of modulation transfer function is flat but with a slightly low pass shape below 10 Hz. The phase of the response is approximately linear in many frequencies. The group delay is around 50 ms at 40 Hz for increasing-frequency sweeps and closer to 100 ms for decreasing-frequency sweeps. THE NEURAL DYNAMICS OF AMPLITUDE MODULATION PROCESSING IN THE HUMAN AUDITORY SYSTEM

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Comparison of the extratympanic electrocochleography in human and rabbit

  Electrocochleography (ECoG) records the electrophysiologic activity of the most peripheral part of the auditory system, the inner ear cochlea and the 8th nerve. Auditory evoked potentials being recorded are Cochlear Microphonic (CM) and Summating Potential (AP). In order to provide the proper background for laboratory research and introducing an ECoG curve of a model animal, it was decided to...

متن کامل

Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence.

A natural sound can be described by dynamic changes in envelope (amplitude) and carrier (frequency), corresponding to amplitude modulation (AM) and frequency modulation (FM), respectively. Although the neural responses to both AM and FM sounds are extensively studied in both animals and humans, it is uncertain how they are corepresented when changed simultaneously but independently, as is typic...

متن کامل

پیاده سازی مدولاتور الکترو اپتیکی دامنه در کاواک خارجی لیزر نیمرسانا برای تولید حالت‌های پریودیک و کنترل ناپایداری

In this paper, by placing the electro optical modulator (EOM) into the external cavity of the semiconductor laser (SL) and amplitude modulation of the optical feedback, the dynamical variation of the output intensity  of the laser has been studied. This is analyzed numerically via bifurcation and time series diagrams with respect to the applied amplitude modulation index, and modulation voltage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010